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ABSTRACT

We demonstrate that on-wafer open-short-load-thru (OSLT) calibrations of vector
network analyzers can be improved by applying artificial neural networks (ANNs) to
model the correlation between DC resistance and RF variations in load terminations. The
ANNs are trained with measurement data obtained from a benchmark multiline thru-
reflect-line (TRL) calibration. The open, short, and thru standards do not vary
significantly from wafer to wafer, so we also model these standards using ANNs trained
with calibrated measurement data chosen from an arbitrary wafer. We assess the accuracy
of five OSLT calibrations with varying load terminations using the ANN-modeled
standards, and find that they compare favorably (a difference of less than 0.04 in
magnitude at most frequencies) to the benchmark multiline TRL calibration over a 66
GHz bandwidth. We demonstrate that ANN models offer a number of advantages over
using calibrated measurement files or equivalent circuit models, including ease of use,
reduced calibration times, and compactness.

I. INTRODUCTION

Multiline thru-reflect-line (TRL) is a highly accurate means of VNA calibration
and is especially useful for on-wafer environments, since the characteristic impedance
can be calculated from dimensional measurements of the standards, which simply consist
of a number of transmission lines of varying line lengths and a highly reflective
termination [1]. The disadvantages of this calibration method are that it requires a lot of
real estate on the wafer, due to the numerous long lines required for an accurate
calibration, and the different lengths of lines necessitates changing the separation
between probes during the calibration process.  Consequently, compact calibration kits,
such as open-short-load-thru (OSLT) [2], are usually preferred for on-wafer applications.
The trade-off is that the kits with smaller, lumped-element artifacts tend to be less
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accurate, since it is more difficult to calculate the reflection coefficients of the standards.
But, if the compact calibration kits can be characterized using a benchmark calibration,
such as multiline TRL, it is possible to perform an accurate on-wafer OSLT calibration.

Once the OSLT standards on a given wafer are characterized, we must decide
whether to develop a model for each of the standards or to directly use the measurement
data obtained from the benchmark calibration. Recently, Jargon et al. [3] applied artificial
neural networks (ANNS) to improve the modeling of on-wafer OSLT standards. They
showed that ANN models offer a number of advantages over the use of calibrated
measurement data files or equivalent circuit models, namely, the following: (1) they do
not require detailed physical models, (2) calibration times can be reduced since only a
few training points are required to accurately model the standards, (3) ANN model
descriptions are much more compact than large measurement files, (4) ANN models,
trained on only a few measurement points, can be much more accurate than direct
calibrations, when limited data are available, and (5) they are less susceptible to the noise
inherent in measured data. The assumption made in this work was that the standards can
be reproduced from wafer to wafer with little variation.

Kirby et al. [4] studied variations in OSLT standards from wafer to wafer on a
CPW calibration set designed for GaAs substrates, and found that open, short, and thru
standards can be reproduced with minimal variance, but that load standards exhibit a
significance difference among the wafers they studied. Furthermore, they discovered that
RF variations in the load terminations correlate directly to their measured DC resistances.

We have expanded upon the method of [4] by implementing ANNs to model RF
variations in the load standards as a function of DC resistance. The following sections
describe our implementation of ANNs to model the on-wafer OSLT calibration standards,
and our assessment of the accuracy of five OSLT calibrations with varying load
terminations using the ANN-modeled standards.

II. ARTIFICIAL NEURAL NETWORKS

ANNs have been applied to diverse areas such as speech and pattern recognition,
financial and economic forecasting, telecommunications, and nuclear power plant
diagnosis, and have just recently been introduced into the area of microwave engineering
[5-8]. In particular, researchers have successfully used ANNs to model microstrip vias
[9], packaging and interconnects [10], spiral inductors [11], MESFET devices [12], CPW
circuit components [13], effective dielectric constant of microstrip lines [14], and HBT
amplifiers [15], to name just a few.

The ANN architecture used in this work is a feed-forward, three-layer perceptron
structure (MLP3) consisting of an input layer, a hidden layer, and an output layer, as
shown in Figure 1. The hidden layer allows for complex modeling of input-output
relationships. The mapping of these relationships is given by [9]
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where X is the input vector, Y is the output vector, and W1 and W2 are the weight
matrices between the input and hidden layers and between the hidden and output layers,
respectively. The function g(u) is a nonlinear sigmoidal activation function given by
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where u is the input to a hidden neuron. An MLP3, with one hidden sigmoidal layer, is
able to model almost any physical function accurately, provided that a sufficient number
of hidden neurons are available [8].

ANNs learn relationships among sets of input-output data that are characteristic of
the device or system under consideration. After the input vectors are presented to the
input neurons and output vectors are computed, the ANN outputs are compared to the
desired outputs and errors are calculated. Error derivatives are then calculated and
summed for each weight until all of the training sets have been presented to the network.
The error derivatives are used to update the weights for the neurons, and training
continues until the errors reach prescribed values. In this study, we utilized software
developed by Zhang et al. [16] to construct our ANN models.

Figure 1. Artificial neural network architecture.

Input Layer Hidden Layer Output Layer

1x

ix

Ix

1y

ky

Ky

Ii ,...,2,1= Jj ,...,2,1= Kk ,...,2,1=

)( 1vg

)( kvg

)( Kvg

)( 1ug

)( jug

)( Jug

jz

Jz

1z
10w

11w

iw1

Iw1

0jw
1jw

jiw
jIw

0Jw

JIw

1Jw

Jiw

10w
11w

jw1

Jw1

0kw
1kw

kjw
kJw

0Kw

KJw

1Kw

Kjw



III. M ODELING THE STANDARDS

In this study, the OSLT and multiline TRL standards and devices were
constructed of CPW transmission lines fabricated from 4.5 µm plated gold on a 625 µm
thick GaAs. The load terminations were composed of TiWN (titanium tungsten nitride)
thin film resistive material [4]. The four line standards included a thru line and three
additional lines that were 0.9552, 1.239, and 1.764 mm longer. All of the standards were
measured using on-wafer probes. For each standard, we measured scattering parameters
at 165 frequencies from 1 to 67 GHz.

Since the open, short, and thru standards did not vary significantly from wafer to
wafer we modeled these standards with ANNs using calibrated measurement data chosen
from an arbitrary wafer. The ANN architecture for the open, short, and thru standards
consisted of one input (frequency) and two outputs (the real and imaginary components)
for each measured scattering parameter. Since we measured reflection coefficients for the
two terminations at both ports and all four scattering parameters of the thru connection,
we ended up with eight ANN models, excluding the load. From our previous study in [3],
we determined that 5 neurons were sufficient for the hidden layer. We trained each model
of the standards using all 165 frequencies since we already had the data on hand. Figures
2-3 show the magnitude and phase of S11 of both measured and ANN model data for the
open and short standards, respectively. Figure 4 shows the magnitude and phase of S11

and S21 using the measured and ANN model data for the thru standard. Notice that the
ANN models for each standard follow the trends of the measured data, but avoid the
scatter of the multiline TRL calibrated measurements. Whether or not this scatter is real,
we see that ANNs follow general trends, but omit the noise, which is usually desirable in
a model.

The ANN architecture for the load standards consisted of two inputs (frequency
and DC resistance) and two outputs (the real and imaginary components) for the
impedance parameters at each port. We were unable to generate one model that included
both ports due to a systematic difference between the load measurements at port 1 and
port 2, so we settled on separate models for each port. Ten neurons were chosen for the
hidden layers since the ANN models for the loads included an additional input compared
to the other standards. The measured DC resistances for the loads are listed in Table 1.
For each port, we trained the models using 3 of the 5 loads. We chose loads 1, 4, and 5
since load 1 had the lowest DC resistance, load 5 had the highest, and load 4 had an
intermediate value. It is important to train ANNs at the expected boundary values of the
input parameter space in order to ensure good performance of the model [6]. By
purposely not training the ANN with loads 2 and 3, we could test how effective the
model behaved at other DC resistances. Figure 5 shows the real and imaginary
components of Z11 of both measured and ANN model data for the 5 load standards.
Likewise, Figure 6 shows the real and imaginary components of Z22 of both measured
and ANN model data for the 5 load standards. Once again, we see that ANNs follow
general trends while omitting the noise.
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Figure 2.  Magnitude and phase of S11  for the open standard measured by 

multiline TRL and modeled by an ANN.

Figure 3.  Magnitude and phase of S11  for the short standard measured by 

multiline TRL and modeled by an ANN.
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Figure 4.  Magnitude and phase of S21  and S11  for the thru standard measured by 

multiline TRL and modeled by ANNs.
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Figure 5.  Real and imaginary components of Z11  for the load standards 

measured by multiline TRL and modeled by an ANN.
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Figure 6.  Real and imaginary components of Z22  for the load standards 

measured by multiline TRL and modeled by an ANN.



                   Table 1.  Measured DC resistances of the five load terminations.

Load DC Resistance (Ω)
Port 1

DC Resistance (Ω)
Port 2

1
2
3
4
5

44.73
45.85
45.20
45.38
46.45

45.01
46.13
45.27
45.64
46.71

IV. ADVANTAGES OF ANN MODELS

One of the advantages of using ANN models as opposed to calibrated
measurement files is the compact description possible with an ANN. For example, the
ANN model we developed for the load at port 1 required 62 real-valued parameters to
generate complex s-parameters as a function of frequency and DC resistance. In contrast,
a single measurement file contains 495 real-valued numbers (165 frequency points plus
the real and imaginary components at each point). If a measurement database of just 5
loads is utilized, the combined files would contain 2475 real-valued numbers.

In addition to the size advantage of ANN models, they are also easy to train and
use. Detailed physical descriptions and equivalent circuit models are avoided. Once the
OSLT standards are measured, one of a number of commercially available ANN
programs may be used to model the standards. We used software that is available, free of
charge, from Zhang et al. [16] to construct our ANN models. After the model is trained, it
can be exported as line code and used in custom software that performs OSLT
calibrations [2,17].

We explored the accuracy of ANN models trained with only a few measurement
points. We did this by training an ANN model at port 1 using the same 3 loads (1, 4, and
5) but this time we used only 9 of the 165 measurement points. By purposely not training
the ANN model at all the available frequencies, we could test how effective the model
behaved at the other 156 frequencies. We found that the ANN model trained at only 9
points exhibited almost identical deviations between measured and predicted values as
the ANN model trained at all 165 points. Our observation that so few training points are
sufficient to model our standards highlights another important advantage in using ANN
models over calibrated measurement data files. We found that it is possible to cut down
on calibration times by measuring only a few frequency points and developing an ANN
model, rather than measuring numerous points and storing large data files.

We also explored the use of ANN models for extrapolation outside the bounds of
the training data. (Generally, it is believed that ANN models are good at interpolating but
not extrapolating.) We did this by training an ANN model at port 1 using 3 of the 5 loads
once again, but this time we chose loads 2, 3, and 4. By purposely not training the ANN
model with loads 1 and 5, we could test how effective the model behaved at



extrapolating. Surprisingly, both the interpolating and extrapolating ANN models
exhibited almost identical deviations between measured and predicted values. This bodes
well for the application of ANN models to our loads, since it is conceivable that other
wafers may possess DC resistances slightly outside the range of the 5 loads we used to
train the models.

V. CALIBRATION COMPARISONS

We performed 5 OSLT calibrations, each one making use of the same ANN-
modeled open, short, and thru standards as well as the ANN-modeled loads with their
respective DC resistances. We calibrated a 1.764-mm long CPW transmission line using
each of the OSLT calibrations and compared the results to measurements calibrated
directly using the benchmark multiline TRL calibration. Figure 7 compares the
magnitudes of S21 and S11 for all 6 calibrations. The agreement is remarkably good except
at a few points where the multiline TRL calibration is extremely noisy.

To obtain a more quantitative idea of the differences, we plotted the maximum
magnitude of the vector differences of the scattering parameters [max(|Sij|)] for the 1.764-
mm line for each of the OSLT calibrations and the multiline TRL calibration. Figure 8
illustrates the differences. All of the OSLT calibrations using ANN-modeled standards
compare favorably to the benchmark multiline TRL calibration, with a difference of less
than 0.04 in magnitude at most of the frequencies over the 66 GHz bandwidth. Not
surprisingly, the OSLT calibrations for loads 2 and 3 show slightly higher differences
since they were not used to train the ANN model. The differences between the 5 OSLT
calibrations and the TRL calibration do not necessarily mean the OSLT calibrations are
in error. The differences are likely due to the presence of noise in the TRL calibration
that the ANN models avoided. Regardless of the source of error, a 0.04 difference
between two on-wafer calibrations spanning 66 GHz is impressive, considering that the
repeatability between two multiline TRL calibrations is usually on the same order.

VI. CONCLUSIONS

In practice, ANN-modeled calibration standards can be easily implemented using
existing or custom software packages. In our case, we utilized MultiCal, a freely-
available program developed by the National Institute of Standards and Technology, to
perform our benchmark multiline TRL calibration. The internal software on any
commercial network analyzer can also be used, if the user has confidence in another
calibration method such as single-line TRL or LRM (line-reflect-match). Then, once the
OSLT standards are measured, one of a number of ANN programs may be used to model
the standards. We used software developed by Zhang et al. [16] to construct our ANN
models. Finally, a program that can perform OSLT calibrations using exported ANN
models is required. We wrote custom software to perform this task, using the equations
found in references [2] and [17] to perform the OSLT calibrations.

We have successfully applied ANNs to model the correlation between DC
resistance and RF variations in load terminations and the RF performance of  open, short,
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Figure 7.  Magnitudes of S21  and S11  for a calibrated 1.764 mm CPW 

transmission line.



Figure 8.  Magnitude of the scattering parameter differences of a calibrated 1.764-mm
CPW transmission line.

and thru standards used for on-wafer OSLT calibrations of vector network analyzers. We
have shown that these modeled standards compare favorably (a difference of less than
0.04 in magnitude at most frequencies) to the benchmark multiline TRL calibration over
a 66 GHz bandwidth.

We have shown that ANN models offer a number of advantages over the use of
calibrated measurement files or equivalent circuit models, namely, the following: (1) they
do not require detailed physical descriptions, (2) calibration times can be reduced since
only a few training points are required to accurately model the standards, (3) ANN model
descriptions are much more compact than large measurement data files, (4) they
eliminate noise inherent in measured data, and (5) ANN models are able to accurately
model loads with measured DC resistances slightly outside their training range.

REFERENCES

[1] R. B. Marks, A multiline method of network analyzer calibration, IEEE Trans Microwave
Theory Tech 39 (1991), pp. 1205-1215.

[2] D. K. Rytting, Network analyzer error models and calibration methods, 52nd ARFTG
Conference, Short Course on Computer-Aided RF and Microwave Testing and Design,
Rohnert Park, CA, Dec. 1998.

[3] J. A. Jargon, K. C. Gupta, and D. C. DeGroot, Artificial neural network modeling for
improved on-wafer OSLT calibration standards, Int J RF and Microwave CAE 10 (2000).

[4] P. Kirby, L. Dunleavy, and T. Weller, The effect of load variations on on-wafer lumped
element based calibrations, 54th ARFTG Conf Dig, Atlanta, GA, Dec. 1999, pp. 81-90.

80

60

40

20

0

|∆
S

ij|
 x

10
3  

70605040302010
Frequency (GHz)

 OSLT - L1 ANN
 OSLT - L2 ANN
 OSLT - L3 ANN
 OSLT - L4 ANN
 OSLT - L5 ANN



[5] K. C. Gupta, EM-ANN models for microwave and millimeter-wave components, IEEE
Int Microwave Symp, Workshop on Applications of ANNs to Microwave Design, Jun.
1997, pp. 17-47.

[6] Q. J. Zhang and K. C. Gupta, Neural networks for RF and microwave design, Artech
House, Boston, London, 2000.

[7] A. Patnaik and R. K. Mishra, ANN techniques in microwave engineering, IEEE
Microwave Magazine 1 (2000), pp. 55-60.

[8] F. Wang, V. K. Devabhaktuni, C. Xi, and Q. J. Zhang, Neural network structures and
training algorithms for RF and microwave applications, Int J RF and Microwave CAE 9
(1999), pp. 216-240.

[9] P. M. Watson and K. C. Gupta, EM-ANN models for microstrip vias and interconnects in
dataset circuits, IEEE Trans Microwave Theory Tech 44 (1996), pp. 2495-2503.

[10] A. Veluswami, M. S. Nakhla, and Q. J. Zhang, The application of neural networks to
EM-based simulation and optimization of interconnects in high-speed VLSI circuits,
IEEE Trans Microwave Theory Tech 45 (1997), pp. 712-723.

[11] G. L. Creech, B. J. Paul, C. D. Lesniak, T. J. Jenkins, and M. C. Calcatera, Artificial
neural networks for fast and accurate EM-CAD of microwave circuits, IEEE Trans
Microwave Theory Tech 45 (1997), pp. 794-802.

[12] F. Wang and Q. J. Zhang, Knowledge-based neural models for microwave design, IEEE
Trans Microwave Theory Tech 45 (1997), pp. 2333-2343.

[13] P. M. Watson and K. C. Gupta, Design and optimization of CPW circuits using EM-ANN
models for CPW components, IEEE Trans Microwave Theory Tech 45 (1997), pp. 2515-
2523.

[14] A. Patnaik, R. K. Mishra, G. K. Patra, and S. K. Dash, An artificial neural network model
for effective dielectric constant of microstrip line, IEEE Trans Antennas Propagation 45
(1997), p. 1697.

[15] M. Vai, S. Wu, B. Li, and S. Prasad, Creating neural network based microwave circuit
models for analysis and synthesis, Proc Asia Pacific Microwave Conf, Hong Kong, Dec.
1997, pp. 853-856.

[16] NeuroModeler, ver. 1.2, Q. J. Zhang and his neural network research team, Department
of Electronics, Carleton University, Ottawa, Canada, 1999.

[17] D. C. DeGroot, K. L. Reed, and J. A. Jargon, Equivalent circuit models for coaxial OSLT
standards, 54th ARFTG Conference Digest, Atlanta, GA, Dec. 1999, pp. 103-115.


